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Singular solutions corresponding to "double forces without moment", an "extension-compression centre", and "double forces 
with moment", obtained previously for an isotropic medium [2, 3] by differentiation of the Kelvin fundamental solution, are 
constructed for media with an arbitrary elastic anisotropy using the method of multiple expansions [1]. © 1997 Elsevier Science 
Ltd. All fights reserved. 

1. F U N D A M E N T A L  R E L A T I O N S  

Consider an anisotropic elastic medium, the equilibrium equations of which can be written in the form 

A(~}x)u ~ -divxC .. Vxu = 0 (1.1) 

where A is a matrb: differential operator of the equilibrium equations, u is the displacement vector, and C is a 
fourth-order elasticity tensor. We will assume that the medium is hyperelastic while the tensor C is strictly elliptic. 

The fundamental solutions of Eqs (1.1) in R 3 in closed form are known only for certain particular forms of elastic 
anisotropy [4]. Whe, n the medium has arbitrary anisotropy, either the method of expansion in plane waves [5] or 
the method of multipole expansions [1] are used to construct the fundamental solutions. In both cases an integral 
Fourier transformation is employed which enables the Fourier transformed fundamental solution (symbol) to be 
written in the form 

E ^ (~)  = A ^ (~)-1 (1.2) 

where A^(~) ~ (2r(12~ • C .  ~ is the symbol of the differential operator of Eqs (1.1). Formula (1.2) shows that the 
symbol E ̂  is positively homogeneous of power -2  and strictly elliptic, in view of the strict ellipticity of the tensor C. 

For the Fourier transformation of expression (1.2) and to construct a truly fundamental solution, the symbol 
E ̂  is expanded in series in multipoles (a series in surface spherical harmonics) [1] 

E"(~)=I~1-2 Y. ~ EnkYnk(~'), ~'=& (1.3) 
n=0.2.4,.., k I~1 

where E ~  are matrix coefficients defined by integration over a sphere of unit radius, and Yk n are surface spherical 
harmonics, and summation over k is everywhere carried out from k = 1 to k = 2n + 1. However, we use the formula 
given in [6], which defines the Fourier transformation of the symbols of integral operators with a weak (integrable) 
singularity, which enables the required fundamental solution to be represented also in the form of a multipole 
series 

E(x) =Ixl-I ~. Yn~ Enk Ynk (x'), x x'  = - -  (1.4) 
n=0.2.4 .... k [Xl' 

n n + l  n+2  

(Tn are the transition coefficients of transform space to the initial space). Questions of the convergence of expansions 
of the form (1.3) and (1.4) are considered in [1]. 

2. S I N G U L A R  S O L U T I O N S  

A double force without moment. Consider a system of two forces, a distance h from one another and acting along 
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along a single straight line in opposite directions. Each of the forces has a magnitude of P/h. Bearing in mind the 
fact that the displacement field of a unit force in an unbounded medium is governed by the fundamental solution 
E, and assuming that the parameter h tends to zero, we obtain 

u = VnE. nP (2.1) 

(n is the vector of unit length directed along the line of action of the forces). 
It is extremely difficult to differentiate Eq. (1.4) directly to obtain the displacement field u from (2.1). The situation 

can be simplified if we carry out a Fourier transformation of both sides in (2.1) 

u^(~) = n.V^(~).nP,  V^(~) = 2ni~,®E^ (~) (2.2) 

It can be seen that the (rank 3) tensor symbol V ̂  is positively homogeneous with respect to ~ of power -1. The 
further calculations involved in the method of multipole expansions are discussed below. 

An extension-compression centre. This is the so-called set of three "double forces without moment", which act 
along three mutually orthogonal directions. Here the displacement field in the medium is given by the expression 

u =div(E)P (2.3) 

The Fourier transformation of both sides of (2.3) can also be represented in terms of the symbol V A 

u" (~) = tr V" (~)P • V/~ 'j (~)P (2.4) 

In (2.4) we have used the rule of summation over repeated subscripts. 
A double force with moment. This case differs from the case of a double force without a moment in the fact that 

here the oppositely directed forces form a pair of forces. The displacement field in this ease has the form 

u = VnE. naP (2.5) 

where n is the vector of unit length, defining the direction of the "arm" of the pair, whereas n is the affine vector, 
which indicates the direction in which one of the forces acts. Formula (2.5) can also take a skew-symmetric form 

u = (V,E. na. - V,~E. n)PI 2 (2.6) 

A Fourier transformation of (2.6) gives 

u ̂  (~) = (n.  V ̂  (~). n~. - n.t .  V" (~). n)P / 2 (2.7) 

Sometimes this case of loading is called a "centre of rotation around the n x n axis" [7]. 

3. T H E  D I S P L A C E M E N T  F I E L D S  

To determine the displacement fields we will expand the symbol V A in a multipole series 

V^(~)=I~I -I Y. Y- VntYt(~ ') (3.1) 
n = 1 . 3 . 5  .... k 

By analogy with (1.3) the (rank 3) tensor coefficients Vmk are found by integrating the symbol V A over the unit 
sphere S 

v . k  = J 
S 

The Fourier transform of the multipole series (3.1) is quickly obtained from (3.1) by introducing the Bochner 
coefficients 3'n 

V(x)=,x, -2 Y- "f.X v.tr.k(x ') 
n=1,3.5 . . . .  k 

C5-: 
(3.2) 

Here, in view of (2.2) the summation in (3.2) is essentially carried out over spherical harmonics of odd powers. 
In conclusion it remains to convolute the operator V and multiply by P. Hence, using the multiple expansion of 

the symbol V A we can construct the displacement fields in an anisotropic medium from the action of the fundamental 
singular forces. 
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